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The behaviour of baroclinic waves growing from instability in a two-layer channel flow 
with rigid (no-slip) sidewalls is described and contrasted with that for the more 
traditional free-slip boundary conditions. The linear theory for the onset of small- 
amplitude disturbances shows that the change in lateral boundary conditions has only 
a modest effect for typical laboratory parameter values, although the no-slip case is 
slightly more unstable at very small values of bottom friction. On the other hand, the 
nonlinear evolution of no-slip modes is completely different. While the free-slip case 
becomes aperiodic only at large values of the supercriticality ( F -  &)IF,,  the rigid wall 
case can be subcritically chaotic. Aperiodic, highly nonlinear wave motions are 
possible for external control values set in the linearly stable region of parameter space. 
Weakly nonlinear analysis shows that the no-slip case has a negative Landau constant 
for moderately small values of bottom friction, and it is in this regime that high- 
resolution numerical simulations exhibit subcritical chaos. At larger values of bottom 
friction, the rigid-wall simulations undergo a supercritical quasi-periodic transition to 
chaos at modest, order one, supercriticality, which is substantially smaller than that 
required for chaos in the free-slip case. 

1. Introduction 
Baroclinic instability is recognized as an important process for the generation of 

waves and eddies in atmospheres and oceans. Such instabilities arise in vertically 
sheared currents in rotating stably stratified fluids if the effects of friction are 
sufficiently small and the stratification is relatively weak. Frictional influence is usually 
measured by a bottom friction parameter Q (defined in 92), which is the ratio of the 
horizontal advective timescale to the spin down time. Stratification is contained in the 
rotational Froude number F, which is the square of the ratio of the horizontal 
lengthscale of the system to the Rossby radius of deformation. 

Laboratory experiments on rotating two-layer flow (e.g. Hart 1972, 1985) have 
shown that the nonlinear evolution of baroclinic waves growing from instability is 
particularly rich in the Q, F parameter space. Steady equilibration is found when Q is 
around 1 and the supercriticality e = (F-F,)/F, is not too big (here &(Q) is the linear 
critical point). If Q is held fixed at around 0.2, and the supercriticality is increased from 
zero, various periodic vacillations of both the wave and zonal-mean fields are observed. 
followed by chaotic baroclinic motions that can arise at quite small values of E z 0.4. 
Attempts to use weakly nonlinear, low-order, and even fully nonlinear computational 
models (e.g. Pedlosky 1971 ; Pedlosky & Frenzen 1980; Hart 1986; Cattaneo & Hart 
1990) to explain the laboratory observations have been only moderately successful. 
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The theories show similar transitions to those observed. However, when important 
dissipative processes present in the experiments are included (especially frictional 
effects adjacent to the interface between the two immiscible fluids), then the models fail 
dramatically to predict the measure of supercriticality needed for chaos. Chaotic 
behaviour is found only for E exceeding about 5 (for realistic Q )  in these models, a 
factor of 10 or so greater than that observed in the lab. 

The models include various assumptions that might be questioned : quasi- 
geostrophy, linear Ekman layers, channels us. cylindrical geometry, etc. This paper 
addresses the effects of sidewall boundary conditions on linear and nonlinear baroclinic 
instability, in the belief that the aforementioned assumptions are less suspect. The 
previous models all employ stress-free (a.k.a. free-slip) sidewall conditions on the 
waves, a free-slip constraint on the basic zonal current, and no-slip conditions on 
secondary corrections to the zonal flow. Such lateral boundary conditions can be 
formally derived when horizontal momentum diffusion is neglected. Of course, this is 
not rigorous with respect to the laboratory fluids, where there is at least one vertical 
sidewall boundary at which a no-slip condition applies to all velocity component. On 
the other hand, the free-slip situation is computationally simpler. Also, quantitatively 
successful comparisons of the onset of linear instability based on free-slip eigen- 
functions with laboratory experiments encouraged use of this assumption in nonlinear 
modelling of baroclinic vacillations and chaos. 

In this paper we study the dynamics of quasi-geostrophic baroclinic channel flows 
with no-slip sidewalls. The channel geometry is chosen in order to simplify the complex 
computations as much as possible. An additional advantage is that this situation can 
be easily compared with previous theories, and it provides a fundamental reference for 
future computations in other geometries with perhaps less constraining ageostrophic 
(modest Rossby number) approximations. The present results show that the horizontal 
shear of the basic state induced by lateral friction and no-slip has a profound effect on 
nonlinear equilibration. The presence of the shear relies on no-slip for its existence, but 
its influence on the equilibration process is largely inviscid in nature. Thus, the results 
apply to the evolution of finite-amplitude baroclinic waves in the atmosphere, where 
lateral shears are typically generated by other means but influence the dynamics in an 
inviscid manner, and in the oceans, where a form of no-slip usually is applied in 
models, communicated either by lateral eddy diffusion or by bottom friction acting on 
shoaling topography. 

The paper is organized as follows. Section 2 introduces the model geometry and 
governing equations. The basic state U ( y )  is derived in $ 3  and its linear stability 
properties are calculated in $4. Once the linear eigenfunctions are obtained, it is 
possible to compute the Landau equation for weakly nonlinear equilibration. This is 
done in $ 5  where it is shown that the instability is subcritical for a substantial range 
of Q. Numerical computations are described in $6. These demonstrate that in the 
region of subcritical instability, the flow can be chaotic (at negative e!). In $7 more 
complicated bifurcation structures are educed by employing empirical orthogonal 
functions, and 48 provides conclusions and suggestions for future work. 

2. Governing equations 
The model used was originally introduced by Phillips (1954) and has been recently 

studied by Klein & Pedlosky (1986) and Cattaneo & Hart (1990), among others, in the 
case with free-slip sidewalls. The system consists of two immiscible fluids, with densities 
pi and viscosities ui, contained in an aspect-ratio 4 rectangular channel, where x is the 
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FIGURE 1 .  Schematic of model geometry. 

zonal direction (0 < x < 8) and y is the meridional direction (- 1 < y < 1). In our case, 
we consider rigid sidewalls at non-dimensional y = 1. We investigate f-plane 
dynamics in this study, so that the Coriolis parameterf= 2Q is constant across the 
width of the channel. The geometry of the model is shown schematically in figure 1. 

Using the quasi-geostrophic approximation, the flow is described by two potential 
vorticity equations 

[$ + J(Pk,)] [ v 2 P k  + F( - l )k(P,  - Pz)] = - QV2Pk[(k- 1) X + ( z - k ) ]  

Qx(V2P1 - VzPz) ( - l ) k  E + +-V4P,, (1) 
1 + X  Ro 

where k = 1,2, Jcf,g) = (af/ax) (ag/ay) - (af/ay) (ag/ax), and Pk is the pressure in the 
kth layer. The second square-bracketed term on the left-hand side of (1) is the potential 
vorticity of the kth layer. This term is operated on by a time derivative and by a 
Jacobian. The Jacobian represents advection by the flow in each layer. The first term 
on the right-hand side of (1) is the Ekman damping at the top and bottom of the 
channel, while the second term represents interfacial Ekman friction. The last term 
represents lateral friction, or horizontal diffusion of vorticity. The motions are assumed 
to be independent of depth within each layer outside the quasi-horizontal Ekman 
layers. For further discussion and derivation of this model see Pedlosky (1987). 

The parameter F is the rotational Froude number, 

Q is the bottom friction parameter, 

x is the viscosity ratio. 
Q = L(v,Q)'/'/(HU), 

.. x = (%/4'/2, 
E is the lateral Ekman number, 

E = v,/(2QL2), 

R, = U/(2QL). 
and R, is the Rossby number, 
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L is the width of the channel, H is the height of each resting layer (which are assumed 
to be equal), U is a characteristic velocity, LU-’ is a characteristic timescale, and 
g is the gravitational constant. The fluids in the two layers are assumed to have equal 
viscosities, so that = 1. One other constant that does not explicitly appear in the 
equations is A ,  the aspect ratio of the channel, which is defined as the ratio of the length 
of the channel to the width. This parameter determines the physical geometry and is 
set equal to 4 for this investigation in order to compare to previous studies using free- 
slip conditions at the sidewalls. 

Generally, the parameters which are varied are F and Q. E/R, ,  which represents an 
inverse Reynolds number, is considered fixed at 0.001. Typical values for F and Q are 
F, z 1.5 < F < 6 (where F, is the critical Froude number) and Q z 0.1. Smaller values 
of E / R ,  are appropriate to some lab experiments. However, computational difficulties 
arise when E / R ,  becomes extremely small or when Q / ( E / R , )  becomes too large. The 
velocities in the two layers are evaluated geostrophically and are given by 

uk = -aPk/ayy, vk = aPk/ax. (7) 

(8) 
Equation (1) can be re-cast by defining barotropic and baroclinic streamfields 

The height of the interface (from its rest value) is given by 

h = R,  F(P, - PI). 

according to 

The governing vorticity equations are then 

Gbt = ;(< + P,), GbC 3 - P,). (9) 

a 
- [v2@bc - 2F@bc1 - J(v2@b,? @ b l )  - J ( v 2 @ b f ,  @be)  - 2FJ(@bt,  @ b e )  at 

E 
= - 2QV2@,, + - V4@,,. (1 1) 

Ro 

The barotropic and baroclinic representation is particularly enlightening for this 
problem, since there is an initial topbottom symmetry introduced by using equal layer 
depths and viscosities. The nonlinear evolution of an instability will generally be 
accompanied by self-generation of a zonal (u = 0) current that is superimposed on the 
basic mean flow U(y) .  Because of the flip symmetry, a particular wavy instability may 
generate either a barotropic zonal correction or a baroclinic zonal correction, but not 
both. These instabilities are termed zonotropic and zonoclinic, respectively. Another 
important symmetry in the problem is possible invariance under zonal pattern shift by 
half the basic wavelength followed by reflection about the midline y = 0. Cattaneo & 
Hart (1990) noted that solutions with this shift-reflect symmetry, which corresponds 
to a ‘checkerboard’ in wavenumber space, are sometimes preferred by the flow. 
These solutions are termed ‘symmetric’, since the velocity at ( x , y )  is the same as at 
( x + 9 / 2 ,  -y ) ,  where Y is the channel length. Solutions that do not satisfy this 
constraint are defined as ‘asymmetric’. 

For a rigid-wall channel, the boundary conditions are such that 
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at y = & 1. To place a second boundary condition on the zonally averaged portion of 
the flow (since it trivially satisfies (1 3)), an appeal is made to mass conservation of the 
Ekman fluxes originating from the corners where the rigid plates at the top and bottom 
meet the sidewalls. Because these plates are uniformly translating, there is no interior 
Ekman suction induced by lid vorticity. However, the Ekman flux at the corners is 
proportional to the top and bottom wall velocities there, since the geostrophic velocity 
vanishes as y + k 1. These fluxes are assumed to flow down the sidewalls in thin inner 
boundary layers and to enter the interior uniformly with depth in each layer. This gives 
rise to an ageostrophic normal velocity $') next to the wall. Now the zonally averaged 
momentum equations for the two layers are 

aiil a - E a* 
- + - ( u l u l ) - q )  = -- 
at ay R,  a y  '1, 
aii, a - E a' a 
- + - ( u , u , ) - q )  = -- 
at ay R, ay2 " 

where an overbar denotes a zonal average. Using the fact that the geostrophic velocities 
equal zero at the sidewalls, and matching the Ekman corner fluxes to the outflows, 
gives 

where U, and U, are the non-dimensional top and bottom lid velocities, respectively. 
This zonal flow boundary condition says that the basic-state vorticity gradient at the 
wall is proportional to U, and U,, and vorticity gradients associated with dynamical 
corrections to the forced zonal flow vanish. Rather than specify U, and U,. at the 
beginning, we chose to use a simple basic-state model ((21) below), which in turn 
determines the necessary wall velocities in a physical realization. 

3. Basic state 
For a channel with free-slip sidewalls, the simplest flow that satisfies the potential- 

vorticity equations and boundary conditions is ubC = Dl,iibt  = D,, where the Dj  are 
arbitrary constants. Thus, the basic flow has no dependence on either x or y. For the 
rigid model, however, the requirement that ubt = ubc = 0 at the walls indicates that the 
velocity must have some meridional dependence on y (unless ubt = ubc = 0 everywhere, 
which is rather uninteresting). An exact solution is obtained from (lo), (1 1). Presuming 
i i b t  = 0, then only (1 1) survives, and it can subsequently be simplified to yield the exact 
equation for a parallel zonal basic state: 

+--- - 0. d2@,, E d4@,, 
-2'dvs R, dy4 

I -  

The solution to this is 

where 
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FIGURE 2. Basic-state velocity profiles for r = d 10 (dot-dashed line), d 100 (dashed line), 

and d l000  (solid line). 

The boundary-layer thickness is then O(l/r) = O(E'I4), and it is essentially a 
baroclinic version of the classical Stewartson layer (Stewartson 1957). The resulting 
baroclinic basic state velocity profile is given by 

(a capital U is used to denote exact basic-state solutions). In terms of boundary 
conditions on the zonally averaged flow, C, = -r2 and C, = 0, implying that the 
upper lid translates uniformly at non-dimensional zonal speed U, = 2, while the lower 
boundary travels with speed U, = -2 .  For large I', the profile is essentially constant, 
except near the meridional boundaries where the velocity must approach zero; for 
r x O( l), the profile resembles more that of a parabola. The velocity profiles are 
shown in figure 2 for three values of r: 410, 4100, and 41000. 

Plausible values of r are physically constrained. In terms of the fundamental 
parameters, 

The first term, L / H ,  is much greater than 1 for geophysical flows and is of O(1) for 
laboratory experiments. The second term is the ratio of the horizontal lengthscale of 
the flow to the Ekman layer thickness, a value which is much greater than 1. Thus r2 
should be rather large, with values on the order of 100 or so being typical in the 
laboratory. 

4. Linear theory 
The linear theory for the onset of instability of the vertically and horizontally 

sheared basic current with no-slip sidewalls can be approached in the same manner as 
that for a two-layer model with free-slip sidewalls (Pedlosky 1987), but the details are 
somewhat more involved. Linearizing (lo), (1 1) about general basic states U,,(y) and 
&(y)  yields the following relations: 

The variables $bt and c,i5bc are the perturbation barotropic and baroclinic stream- 
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FIGURE 3. First four basis functions g,(y),  i = 0, 1, 2, 3, for the rigid, linear instability problem. 

functions, while qbt and qbc are, respectively, the barotropic and baroclinic 
perturbation potential vorticities and are defined as 

nbt and n b ,  are the potential vorticities of the basic state and have gradients given by 

anbl/ay = - a2qt/ap,  (27) 
anbc/a-v = - a q , , / a y 2 + 2 ~ ~ , ,  = (1 - U,,)P+~FQ,~, (28) 

and Ubt and Ub, are, respectively, the barotropic and baroclinic basic-state zonal 
velocities. ub, is given by (21), while U,, is chosen to be zero for most of the 
computations presented here. Equation (28) is obtained with the use of (21). 

For the slippery-wall model, the governing equations have constant coefficients, 
since Q,, = 1. Thus, $bt and $be can be represented as eikr cos tny, which directly yields 
F, = t (k2  ++n2) in the inviscid limit. For our rigid-wall model, the no-slip condition on 
the boundaries suggests that we represent the meridional dependence of #bt and #be by 
the family of functions, g,( y), n = 0, 1 ,2, . . . , where 

and T,(y) = cos [n cos-' y] (30) 
is a Chebyshev polynomial of the first kind. The functions g,(y) have the property that 
g,( & 1) = (dg,/dy) ( f 1) = 0 so that the boundary conditions on the velocity are 
satisfied. Figure 3 displays go(y) ,  g , (y ) ,  g2(y), and g,(y), showing their rough similarity 
to trigonometric functions and also revealing narrow layers near the boundaries where 
dgn/dY+O. 

A disturbance is represented as follows: 



1 I6 M .  D .  Mundt, N .  H.  Brumnlell and J .  E. Hart 

The expressions given in (31), (32) are substituted into (23), (24) and the resulting 
equations are projected back onto the basis functions g,L(y) via a Galerkin procedure. 
This results in a set of linear, homogeneous equations for the a, and b,, yielding 
an eigenvalue problem for c. The corresponding eigenvector gives the meridional 
structure of the disturbance. The parameter M is increased to include successively more 
modes until the results converge. Because of the even symmetry of the basic state about 
y = 0, only those g,(y) which possess purely even or purely odd symmetry in y are 
entrained in the initial instability. Thus, in the calculations to follow, we include only 
the more-unstable even modes as basis functions, so that a resolution of M = 20 
implies the inclusion of 11 even g,s. 

r is the relevant parameter in shaping the basic flow profile. This quantity is kept 
fixed for stability calculations while the critical value of F is sought for various Q; a 
choice for Q then automatically determines the value of E / R ,  that is to be used. With 
the barotropic basic state equal to zero, the system has topbottom antisymmetry. If 
the system is flipped over and the zonal directions reversed the original system is 
recovered. The numerical computations confirm that the growing wavy modes are non- 
propagating (c, = 0, where c, is the wave phase speed) waves with critical layers at 
the wall. Figure 4(a-c) displays the stability curves for M = 20 (i.e. 11 even modes) 
with r equal to ~ ‘ 1 0 ,  d100, and d l000 ,  respectively. The average difference in 
calculated values of & using M = 18 instead of M = 20 was found to be 0.33 YO, where 
the differences were calculated for all curves in figure 4. The largest errors, which are 
about 3%, occur only when r is large and Q is small. Figure 4 show that the rigid 
model is more stable at large values of Q but less stable at small values of Q. These 
effects are more pronounced at smaller r, and at the extremes of Q for fixed r. 

What causes the relative destabilization of the rigid-wall flow for small Q? We first 
observe that the wavy-perturbation boundary layer, which brings tangential velocities 
to zero at the walls, is typically much thinner than the zonal-flow boundary layer, 
which has a thickness of l / r .  This inner viscous boundary layer for the wave sees 
U,, x 0. Additionally, because of the system’s inherent symmetries, the numerical 
results generate meridional dependences of q5bl and q5bc such that one is purely real and 
the other is purely imaginary, which allows us to denote the barotropic meridional 
function asAy) and the baroclinic function as g(y), wherefand g are either purely real 
or purely imaginary functions. For y x f 1, (23), (24) simplify to yield approximate 
boundary-layer equations valid near the walls : 

In the inner viscous layer, the meridional advection of basic-state vorticity is balanced 
by the diffusion of perturbation vorticity due to lateral friction. The wave boundary 
layer thus has a thickness 

A 3 ( E / R , / r 2 ) ” 4  = (2Q)”‘//r (35) 
given that the zonal wavenumber k is approximately 1. Therefore, the ratio of the wave 
boundary-layer thickness to the zonal boundary-layer thickness is (2Q)”*, so that the 
wave viscous boundary layer will be well inside the basic-state shear zone for Q 4 1. 
This means that the wave essentially sees the basic-state Stewartson layers as inviscid 
horizontally sheared currents. 
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Using the above arguments, if the dissipation parameters (Q, E/R,)  are small, the 
functionsfly) and g(y) outside the wave boundary layer should be similar to those 
obtained by examining the inviscid form of (23), (24), where terms involving Q and 
E / R ,  are neglected. An exact neutral solution of these inviscid equations which satisfies 
no normal flow through the walls at y = & 1 (i.e. no suction out of the inner sidewall 
layers) is 

f l y )  = U,,(Y), (36) 
g ( y )  = 0, (37) 

a result previously found by Pedlosky & Klein (1991) in a related problem with no-slip 
sidewall conditions on the basic state but free-slip on the wavy perturbations. These 
forms satisfy the inviscid equations only if F = k2/2. The dissipative terms give rise 
only to a passive boundary layer of thickness h (given by (35)) so that the no-slip 
boundary conditions at y = f 1 are satisfied. A weak boundary suction velocity 
will occur to modify slightly the boundary conditions on the interior solution shown 
in (36), (37). A scale analysis reveals that the solution shown in (36), (37) is consistent 
in generating relatively small dissipative terms when 

Q @ 1 ~ 7 4 ,  (38) 

where (35) is used as an estimate of the boundary-layer thickness forfly). For values 
of Q that do not satisfy (38), there will be departures from the behaviour of (36), (37), 
and the slippery solution itself is a candidate when l/r4 Q Q 4 I .  In this case Q is small 
enough so that dissipative terms can be neglected, and r is large enough that the flow 
appears largely uniform in the meridional direction. 

Establishing these two solutions as different limits of the nearly inviscid case helps 
to provide an explanation of the lower stability threshold of the rigid case compared 
to the free-slip situation. In both limits, the absence of viscosity, coupled with the 
stipulation that U,, = 0, leads to the result that $bc = qbc = 0 at F = 4. Therefore, at 
I; = 5 (23) vanishes, and (24) reduces to 

Thus, at the onset of instability, the zonal advection of the relative vorticity of the 
barotropic wavy perturbation by the basic-state zonal flow balances the meridional 
advection of the basic-state potential vorticity by the meridional velocity of the 
barotropic perturbation. In the slippery case, the basic-state potential vorticity 
gradient reduces to 2F, while in the rigid case, there is a non-zero curvature to U,, 
which gives the basic state the relative vorticity gradient shown in (28). In the limit 
Q @ r4, the meridional advection of the relative vorticity of the basic state by the 
perturbation meridional flow completely cancels the zonal advection of the au/ay 
portion of the perturbation relative vorticity by the basic flow (more specifically, it is 
the portion of the perturbation relative vorticity that gives rise to the in2 term in the 
free-slip case), thus yielding l$ = :k2. In between the limits where the two solutions 
are rigorously applicable, these two advective terms partially cancel so that 
ik2 < 

The above scaling arguments are reflected in the linear numerical calculations. The 
eigenfunctions were calculated for Q = and r = 2/10, where the corresponding 
value of F, is 0.43, slightly larger than the theoretical limit of F, = ik2 = 0.31 for 
k = in. The barotropic meridional mode (normalized so that its maximum amplitude 

< i(k2 + in2). 
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FIGURE 5. Comparison of barotropic eigenfunction (solid line) with : (a) basic-state velocity profile 
Q = f = dl0 (dashed line); (b) slippery-case eigenfunction (i.e. cos(ny/2)), Q = lO-I ,  

f = 1000 (dashed line); (c) slippery-case eigenfunction (i.e. cos(ny/2)) (dashed line) and basic-state 
velocity profile, Q = lO-l, f = dl00 (dot-dashed line). All profiles are normalized to a maximum 
value of 1 for comparison. 

is 1) is shown in figure 5(a)  along with the basic-state velocity profile. Except for the 
requisite boundary layers on the barotropic mode at y = f 1, there is very close 
agreement between the two shapes. In addition, the scale analysis that yields (38) also 
predicts that the baroclinic amplitude (relative to the O( 1) barotropic amplitude) 
should be O(Q112P) when Q 4 T4. The numerical results yield an amplitude ratio of 
0.14, which is in agreement with the prediction of an amplitude ratio of 0.1 for the 
parameters used above. 

Eigenfunctions were also calculated for Q = lo-' and r = d 1000. For this case, 
F, = 1.56, while the slippery value is F, = 1.59. The rigid-case barotropic eigenfunction 
and the slippery-case profile, cos (tny), are shown in figure 5(b). For comparison, the 
rigid-case profile is again normalized so that its maximum value is 1. Except for the 
boundary layers near y = & 1 for the rigid solution, there is almost exact agreement in 
the shapes of the profiles. Additionally, the linearized equations predict a baroclinic 
eigenfunction amplitude of O(Q) = O(lO-l), while the numerical results yield a value 
of 0.19, so that the baroclinic eigenfunction is again consistent with the asymptotic 
analytical predictions. For comparison, the barotropic eigenfunction obtained for 
Q = lo-' and r = 4 100 is shown in figure 5(c), along with the cosine and basic-state 
profiles. At this parameter setting, which lies in between the two extremes discussed 
above, the barotropic eigenfunction is very similar to that obtained for the slippery 
case (i.e. a cosine solution), although F, is less than that for free-slip sidewalls. 
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In summary, the above results indicate that there are two different solutions for 
small Q, depending on the relative sizes of Q and r. For I-4 < Q < 1, the solution 
approaches that of the slippery case and F, = #' + fn'). For Q 4 r4 and Q + 1, the 
solution approaches that given by Pedlosky & Klein (l99l), where the barotropic wavy 
streamfunction is equal to Ubc, the baroclinic streamfunction is zero, and F, = ik'. 

In the intermediate region where T4 < Q < 1 but Q f 4  is relatively small, the 
slippery solution is not a good approximation to the rigid-case result. The decrease of 
F, with decreasing r can be explained by appealing to the energy equation for the 
perturbations, which is given in Pedlosky (1987) and can be recast in terms of 
barotropic and baroclinic quantities to yield 

The left-hand side of the equation is the time rate of change of perturbation energy, 
partitioned into the perturbation kinetic energy (K' )  and the perturbation potential 
energy (P'). The right-hand side comprises several terms. The first two are the 
barotropic energy transfer terms. These depend on the meridional structure of the basic 
state. For our present purposes, ub, is zero and the second term thus vanishes. The first 
term represents the conversion of the basic-state kinetic energy directly into 
perturbation energy. The third term is the baroclinic transfer term, which converts 
available potential energy of the basic state into perturbation energy and depends only 
on the vertical structure of the basic state. The fourth and fifth terms denote the energy 
loss due to bottom friction; similarly, the last two terms represent the dissipation from 
lateral friction. 

The linear numerical results show that as the horizontal shear layer of the mean flow 
widens (i.e. f decreases), there is a marked increase in the magnitude of the barotropic 
energy transfer term. However, this term is negative for all the cases considered here, 
which indicates that the barotropic transfer term is taking energy from the 
perturbations and placing it back in the basic Ub, profile. The barotropic energy 
transfer is thus not responsible for the lowering of F, with decreasing r and in fact 
produces a stabilizing effect. However, the frictional terms in (40) become smaller as 
rdecreases and in fact more than offset the barotropic transfer, resulting in a decrease 

Finally, the behaviour of the flow at large Q merits a brief discussion. Referring to 
figure 4, the large-Q solutions obtained for smaller r indicate that the no-slip flow is 
noticeably more stable than the free-slip case, while solutions for larger r approach the 
slippery results. This phenomenon can be understood by again appealing to the energy 
transfers occurring within the system. The barotropic transfer is essentially zero for all 
values of r considered. Thus, at F = F, there is a balance between baroclinic energy 

of F,. 
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conversion and dissipation. As r increases, the magnitude of the lateral dissipation 
decreases with respect to that of the bottom friction (which is not unexpected, since 
E / R ,  is decreasing), and the overall magnitudes of both types of dissipation decrease, 
thus lowering F, and moving it towards the free-slip value. For smaller the free-slip 
solution is not a good approximation owing to the large horizontal shear layers in the 
basic flow, and this results in an increase in F, from the free-slip value. 

The results presented above indicate a substantial difference in the stability curves 
for the rigid-wall and free-slip cases at extreme (small or large) values of Q.  For 
Q z 0.1-1 .O, however, the differences can be insignificant. Hart (1972) found that the 
stability curves of a free-slip model agreed well with those obtained from laboratory 
experiments in a cylinder (which necessarily has a single rigid wall). These laboratory 
results were obtained in the range O( lo-’) < Q < O( 1) and with w ~ ‘ 2 0 0 .  As is 
evident from figure 4(b), this is indeed the region where the two solutions closely 
coincide, so that the agreement found between experiment and free-slip theory would 
appear to be an artifact of being in a regime where stabilization due to rigid no-slip 
boundary conditions on the waves, and destabilization due to the presence of a p- 
dependent basic state, roughly balance. 

Another twist is that in the laboratory the upper layer is usually driven from above 
by a differentially rotating lid. This gives the upper layer a non-dimensional velocity of 
3, while the lower layer has a non-dimensional velocity of 1 (Hart 1972). For the 
channel analogue this yields V,, = 2, V,, = 1 in the interior of the flow. The stability 
problem differs fundamentally from that previously discussed because a barotropic 
basic state allows critical layers in the flow’s interior. In other words, the vertical 
asymmetry of the problem causes the wavy perturbations to have a phase speed which 
is approximately equal to Ubt. Therefore, since the velocity must approach zero near the 
walls, in the upper layer only there will be a value of p for which the upper-layer 
velocity V, = c,., where c, is the phase speed of the wavy perturbation. At the onset of 
instability, ci = 0, so that the inviscid form of the equations contains a singularity. 
Although the presence of dissipation avoids a singular set of equations, one might 
anticipate significant changes in the eigenfunctions near the critical layer for small to 
moderate values of Q. 

To investigate this problem, a barotropic basic state of the form 

is added. where 

Note that (41) is the exact solution to (10). The barotropic basic-state velocity profile 
is then 

cosh fv 
2 I------ 

c o s h f l .  
bt = -a@ 

c?v 
Ub, = ~ (43) 

Linear stability curves for 0.01 < Q < 10 and r = ~ ‘ 1 0 ,  ~‘100,  and 1/ 1000 are shown 
in figure 6(a-c). A value of M = 20 cross-stream modes (again including only the even 
eigenfunctions) was used for all calculations. Stability curves were also found using 
M = 18 and M = 24, and noticeable differences were found only for Q w 0.01. 

10, there are substantial differences in the stability curves between the 
two rigid-wall cases. The case with U,, =I= 0 is generally more stable for Q 2 1. For small 

For r = 
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FIGURE 6. Linear stability curves for rigid model with V,, = 0 (solid line) and V,, 9 0 (dashed line); 
(a) r = dio, (b)  r = d i o o ,  (c) r = diooo. 

values of Q, however, the k = 2n/4 and 3n/4 waves are less stable than their V,, = 0 
counterparts. For r = d100, shown in figure 6(b), the situation is similar. However, 
for large Q, the two cases agree much better. Finally, for r = 1000, where the zonal 
shear layers are trapped in a thin viscous region near the wall, the curves agree almost 
exactly for large Q. For intermediate values of Q, the situation with V,, + 0 is more 
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FIGURE 7. Imaginary parts of eigenfunctions of barotropic perturbations with (a) &, = 0 and (b) 
V,, + 0, for r = 100, Q = 0. I ,  k = in. The dashed lines show the critical layer where V,, = c,. 

stable for all k, and for small Q, F, values are slightly lower when U,, =# 0. Nonetheless, 
the differences in critical values are again small for Q values typical of laboratory 
experiments. 

Figure 7 shows the imaginary part of the barotropic eigenfunction for both 
situations for r = 4100, Q = 0.1, and k = an. In the figure, the eigenfunctions have 
both been normalized to 1, and the critical layer (i.e. the value of y for which U,, = cT) 
for the second case is shown by the dashed vertical lines. When Ubt + 0, the 
eigenfunction undergoes substantial variation as it passes through the cntical layer. 
This does not occur when V,, = 0. A similar variation in the eigenfunction when y is 
at or near the critical layer is observed for all values of r. 

5. Weakly nonlinear theory 
A normal-mode cascade model was constructed to examine the finite-amplitude fate 

of the no-slip instabilities discussed in $4, The method follows Pedlosky (1970, 1971, 
1972), who examined the evolution of initially small wavy perturbations in a channel 
with free-slip sidewalls. This expansion procedure yields an amplitude equation with 
form 

where A is the amplitude of the wavy perturbation, y is the Landau constant, and h.0.t. 
indicates higher-order terms. In Equation 44, the time is scaled by the reciprocal of the 
linear growth rate. A supercritical bifurcation will have y > 0, so that the nonlinear 
term brings the amplitude to an eventual equilibration. However, a subcritical 
bifurcation occurs if y < 0 so that the lowest nonlinearity of the equation actually 
destabilizes the steady state, predicting an infinite amplitude in a finite time. It is 
important to note that (44) is first order. This will occur when the supercriticality 
parameter 

is small enough that frictional effects are much larger than inviscid growth (i.e. 
Q / A  p 1). Since we are concerned here with the dynamics arbitrarily close to the 
neutral curve, we are free to choose A small enough such that frictional effects are 
important. In the event that Q 5 A'/2, the dynamics are described by a higher-order 
system (see Pedlosky 1970, 1971, 1972). 

To arrive at (44), we expand the finite-amplitude perturbation in powers of All2 .  We 
write 

(46) 

(47) 

dA/dt = A-yA3+h.o.t., (44) 

A (F-F,) (45) 

$bt = A'I2$b',) + A$g' + A3I24g) + . . . , 
$be = A'12&' + A$::) + A3l2$K' + . . . , 
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0.08 0.10 0.12 0.14 0.16 0.18 0.20 

Q 
FIGURE 8. Landau coefficient (7) versus Q. The solid line shows the overall coefficient, while the 
dashed and dot-dashed lines show the wave-wave and wave-mean contributions, respectively. 

where the superscript indicates the order and 4:; and $!; are all O( 1 )  variables. We also 
stipulate that our new time variable, T, be scaled such that 

a /a t  = Aa/aT. (48) 
Finally, we specify that $bl and & have a slow time dependence given by A(T).  

Isolating all terms of O(A'/2), we obtain 

L[$g $;"I' = 0. (49) 
Here, L is a linear differential operator matrix whose elements are given by (23), (24). 
Solving this set of equations with no-slip boundary conditions yields F, and the linear 
eigenfunctions. At O(A), we find 

(50) 
The right-hand side consists of the nonlinear interactions of the O(LI' /~) solution. From 
this equation, we obtain two particular solutions - one that is proportional to elikx and 
one that is a function of y only. These are the second zonal harmonic and the mean- 
flow correction generated directly by the nonlinear interactions of the linear 
eigenfunctions. Finally, at O(A3/2), we obtain 

(51) 
In this case the right-hand side contains terms that resonate with the left-hand side. In 
order that the solution be valid, these terms must not project onto the eigenfunctions 
of the adjoint linear problem, which are proportional to eikx. This creates a solvability 
condition that yields the Landau equation, allowing us to determine y. The actual 
calculations are quite tedious, and progress was only possible by using a symbolic 
manipulator. The linear eigenfunctions $g), $;:) each contain seven even terms of the 
Chebyshev expansion shown in (31), (32) (the differences obtained using five terms are 
insignificant). 

The results are shown in figure 8. These were calculated with E / R ,  = 0.001, so that 

L[$$ $b",']' = [RY' R?']'. 

L[&' $b",']' = [RY' R?']'. 
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an increase in Q implies a corresponding increase in r. The Landau coefficient is 
negative for Q < 0.13, rendering the instability subcritical. In addition, it is the 
wave-mean flow interaction that yields a negative y .  The wave-wave interactions are 
stabilizing for all Q. Because the wavy eigenfunctions are similar to those in the free- 
slip case, one might have expected the wave-mean interactions to still be stabilizing; 
however, the alteration of the basic-state flow in going from free-slip to no-slip 
conditions completely changes the character of the wave-mean interactions. 

To identify the physical mechanism responsible for the negative Landau coefficient, 
the nonlinear terms that combine to yield the wave-mean portion of the Landau 
coefficient (i.e. the destabilising part) were compared with their counterparts in the 
slippery case, in which the wave-mean portion of the Landau coefficient is positive and 
thus stabilizing. Figure 9 (a)  displays the contributions from the various nonlinear 
terms for the slippery case, while those for the rigid solution are displayed in figure 
9(6). The 4 terms are defined as follows: 

where ubC = V2qibc and wbt = V2qib,. 4 is the zonal advection of wavy baroclinic relative 
vorticity by the zonal flow, 4 is the meridional advection of zonal relative vorticity by 
the baroclinic wavy perturbation, J3 is the meridional advection of zonal relative 
vorticity by the barotropic wavy perturbation, J4 is the zonal advection of wavy 
barotropic relative vorticity by the zonal flow, and J5 is the meridional advection of 
zonal baroclinic vorticity due to interface stretching by the barotropic wavy 
perturbation. In addition, the tilde indicates the adjoint solutions, the prime indicates 
wavy quantities, and the overbar indicates zonally averaged variables. In figure 9, the 
plots are normalized by the total contribution to the Landau coefficient at Q = 0.08. 
Although the respective magnitudes of the 4 are different between the two cases, only 
J3 in the rigid case possesses a sign opposite to that of its slippery counterpart. Thus, 
the barotropic wave field advects zonal vorticity in such a way that it enhances its own 
growth rate against the background state. 

The quantity J3, which has an O( 1) stabilizing effect in the free-slip case, has an O( 1) 
destabilizing contribution in the rigid formulation. In fact, the change of sign of J3 
coincides closely with the change of sign of the entire contribution from the wave-mean 
interactions to the Landau coefficient. Indeed, if one examines the slippery case for 
Q $ 1, then 4 and J ,  can be shown to be O(Q2) with respect to the remaining 4. In 
addition, although J4 and J5 are O(1), their difference is also O(Q*). Therefore, J3 is left 
as the only remaining O( 1) contribution to the Landau coefficient. Moreover, the 
difference between 4 in the slippery and rigid cases can be traced to a single term in 
,I3, C7isb2,'/2y = c18$~)/c7?.,y, since the product of the other two terms, $bc, has almost the 
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FIGURE 9. Contribution by nonlinear wave-zonal interactions to Landau coefficient. for E / R o  = 
0.001: ( 0 )  slippery case, (b)  rigid case. The plots have been normalized by the total wave-mean 
contribution to the Landau coefficient at Q = 0.08. The 4 terms are defined in the text. 
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FIGURE 10. c;,& versus ,Y for (a) slippery and (b )  rigid cases, Q = 0.08. 
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FIGURE 1 I .  Zonal vorticity gradients versus v for (a) slippery and (6)  rigid cases, Q = 0.08. 
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FIGURE 12. Contributions to forcing of zonal-correction equation, rigid case, Q = 0.08. 

same shape in both the rigid and slippery cases, as figure 10 shows. The free-slip and 
rigid zonal-correction vorticity gradients are shown (for Q = 0.08) in figure 1 1, and the 
amplitudes are normalized to 1 for convenience. In the rigid case, the large amplitude 
deviations near the walls, which correspond to large vorticity gradients, change the sign 
of J3 from positive to negative for smaller values of Q. Thus, the subcritical instability 
owes its existence entirely to the presence of rigid sidewalls via the generation of very 
different basic-state vorticity gradients. As Q increases and the basic profile approaches 
that of the free-slip case, 4 becomes positive and the instability becomes supercritical. 

These profound differences in the second-order, zonal-correction gradients can in 
turn be traced back to the shapes of the linearly unstable wavy eigenfunctions. The 
equation for the baroclinic zonal correction can be written schematically as 
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where $6”,‘ is the second-order, baroclinic zonal-correction term and 9 denotes the 
right-hand-side forcing. This equation is dominated on the left-hand side by the fourth 
derivative term, and the right-hand side is a result of the nonlinear interactions of the 
first-order terms. These nonlinear terms give rise to large derivatives near the walls, 
thus causing the shape of the zonal correction to deviate significantly from the free-slip 
case. The right-hand side is dominated by the term -kf1g;”/2, representing the 
meridional advection of baroclinic vorticity by the barotropic meridional velocity, 
wheref, is the barotropic meridional eigenfunction and g, is the baroclinic meridional 
eigenfunction. The functionsf,, g,, gy, and - kfl g;”/2 for Q = 0.08 are shown in figure 
12. The shape of the nonlinear term is similar to that of the vorticity gradient for the 
rigid case shown in figure 11 and thus reveals the origin of the zonal correction’s shape 
(in fact, the antiderivative of - kfl g?/2 is approximately the vorticity gradient). In 
contrast, the eigenfunctions and nonlinear terms in the slippery case are sine and cosine 
functions, giving rise to the cosinusoidal zonal vorticity gradient of figure 1 1  (a) .  

6. Fully nonlinear model 
The weakly nonlinear analysis shows that, in comparison to the model with free-slip 

sidewalls, very different and potentially very interesting dynamics are possible when the 
supercriticality (F- &)I& is small or even negative. What happens, for instance, when 
y < O? To investigate this situation (among others), high-resolution numerical 
simulations were utilized. We now describe computational solutions of (10) and ( 1 1) 
with V,, = 0, so that only a baroclinic basic state exists. 

6.1. Numerical method 
The numerical model implements a pseudo-spectral method, where linear terms are 
computed in spectral space, while nonlinear terms are computed in physical space. 
Conversions between the two spaces are carried out by fast transform methods. The 
time discretization is semi-implicit: the linear terms are updated using an implicit 
Crank-Nicholson scheme, while the nonlinear terms are marched forward with an 
explicit three-level Adams-Bashforth method. Owing to the nature of the boundary 
conditions, the spatial discretization in the two directions is different, utilizing Fourier 
modes in the zonal direction and Chebyshev polynomials in the meridional. Since the 
Chebyshev functions do not individually satisfy the rigid boundary conditions (i.e. no- 
slip and impenetrable), they are combined using a ‘ tau’ method in order to meet the 
necessary requirements (Canuto et al. 1988). Unlike a model with free-slip sidewalls, 
in the rigid-wall formulation there are no boundary conditions on the vorticity for the 
wavy portions of the flow. To overcome this problem, a modification of the influence 
matrix technique (Kleiser & Schumann 1980) is used. 

The model was run at two different resolutions: 64 x 33 and 128 x 65. The higher- 
resolution runs were compared to those performed at lower resolution near transition 
points in parameter space, especially near the onset of chaos. No substantial difference 
in results was found between the two resolutions. Consequently, a resolution of 64 x 33 
was deemed adequate to provide convergent results (especially since, as opposed to the 
free-slip case, most of the interesting behaviour occurs for F zz F,) .  The code was 
validated against the linear theory of 64. 

6.2. Results 
Numerical runs were made for variable Fwith Q = 0.08,O. 10,O. 125,O. 15 and 0.20. The 
critical values of F for the above parameter settings are approximately 1.44, 1.52, 1.60, 
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1.67 and 1.8 1, respectively. One run was also made for variable Q with F = 1.90. For 
all of the computations, E / R ,  was kept fixed at 0.001. Solutions for variable F were 
initially obtained by starting just above F, and sequentially increasing F to examine any 
changes in behaviour. For these parameter settings, the free-slip model shows mainly 
steady, and at most periodic, behaviour. 

The results for the no-slip model are shown in figure 13. For Q = 0.2, the bifurcation 
structure is similar to that seen in the computational simulations with free-slip 
conditions (Cattaneo & Hart 1990; Mundt & Hart 1995), i.e. S + AV --f QP + C, with 
AV indicating periodic amplitude vacillation. However, in the free-slip case this 
transition to chaos is found only for Q < 0.05 and F 2 8. Over the range of Q and F 
shown in figure 13 (a), the free-slip case becomes periodic at F 2 4. In the no-slip case 
for 0.08 < Q < 0.15, however, the behaviour is not steady, but rather periodic or 
chaotic. The fact that the amplitude of these motions does not approach 0 at F, 
confirms that the instabilities born at F, are subcritical, as expected from the results of 
95. In figure 13 (b) ,  the solutions are obtained by starting with a solution for F > F, and 
using this as an initial state to find a solution for F < 4. The subcritical region is quite 
large for Q = 0.08 but nearly disappears for Q = 0.15. Hysteresis occurs in the 
investigations made for F = 1.9 with variable Q ;  in the region 0.12 < Q < 0.15, a 
stable solution exhibiting amplitude vacillation can also be found, though it is unstable 
to sufficiently large asymmetric perturbations. Although not shown in figure 13, a set 
of runs was performed for Q = 0.5. The results display only steady behaviour until 
O( 10) supercriticality and thus will not be discussed further. 

The hysteresis that arises due to the subcritical dynamics yields multiple solutions for 
a given parameter value. Generally, the solutions differ in their temporal behaviour and 
spatial structure, a result of breaking the shift-reflect wave symmetry. However, in 
certain regions where figure 13 indicates AV behaviour, there can exist AV with or 
without a barotropic zonal correction. In this case, the solutions differ in their 
topbottom symmetry, but their temporal behaviour is nearly identical. In figure 13, 
the AV regimes always exhibit a symmetric, or shift-reflect, wave symmetry; 
conversely, the QP regions nearly always have an asymmetric wave field, in which all 
waves may possess non-zero energy. 

The behaviour at Q = 0.1 is especially interesting because of the subcritical 
behaviour at F, = 1.52 and also due to the fact that the asymptotic state of the system 
is chaotic at 4. Small, random initial conditions quickly settle into a symmetric, AV 
regime with no barotropic zonal corrections. A time trace of the lowest symmetric 
baroclinic zonal correction, calculated at F = 1.53, is shown in figure 14. Once the flow 
enters AV, the asymmetric barotropic zonal correction (also shown in figure 14), which 
was zero during the initial growth of the wavy perturbations, grows to finite amplitude 
starting at t M 300. This instability, whose dominant frequency is slightly less than half 
that of the amplitude vacillation, appears to result in a quasi-periodic solution. 
However, around r M 800, the remaining two possible symmetry-breaking instabilities 
(i.e. the asymmetric zonoclinic and symmetric zonotropic types) start to grow just after 
the system has seemingly settled into a QP state. These modes both eventually attain 
the same magnitude as the others, and the system behaves chaotically. 

Figure 13(a) shows that at Q = 0.08 the flow also becomes chaotic. In this situation, 
there is an initial onset of AV, just as for Q = 0.10. Subsequent to this, however, all of 
the remaining zonal modes, i.e. symmetric barotropic, asymmetric barotropic, and 
asymmetric baroclinic, grow and reach finite amplitude nearly simultaneously. Thus, 
in this situation all the symmetries of the problem are broken concurrently. The end 
result is chaotic behaviour similar to that seen at Q = 0.10. Figure 15(e) displays a 
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FIGURE 13. Regime diagram for rigid-wall model with (a) increasingly supercritical parameters and 
( h )  decreasingly supercritical and subcritical parameters. The solutions are obtained by following the 
arrows in the direction indicated in the (F ,  Q)-plane. Note that they are in opposite directions in ((I) 
and (h).  0 denotes the basic-state solution, S denotes steady behaviour, AV denotes periodic 
amplitude vacillation, QP denotes quasi-periodicity, C denotes chaos, and SV denotes periodic 
structural vacillation. The dashed line indicates F,. 
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time trace of the baroclinic wavy kinetic energy for F = 1.25, well below the critical 
value F, = 1.42. The behaviour is similar to that exhibited by the same mode in figure 
14, where the nonlinearities cause a low-frequency large-amplitude modulation, on 
which is superimposed a smaller, AV-type frequency. 

For Q = 0.15 and 0.20 there exist stable AV regimes over a finite range of F. In both 
situations, the AV solution yields to a narrow range of quasi-periodic behaviour before 
becoming chaotic. Figure 15 displays time traces of the baroclinic wavy kinetic energy 
for Q = 0.20 and F = 1.85,2.50, 3.75 and 4.20. These values of Fcorrespond to steady, 
periodic, quasi-periodic, and chaotic behaviour. respectively. The levels of quasi- 
periodicity and chaos seen at Q = 0.2 are quite small and result only in a weak 
departure from amplitude vacillation. This should be contrasted with the chaotic 
behaviour found for Q = 0.08, where the amplitude deviations are much larger. 

Figure 16(a) show the behaviour of the streamfunctions over one period in the 
periodic regime for Q = 0.2 and F = 2.50. The colour displays the barotropic portion, 
while the black contours show the baroclinic part. For both variables, the time- 
averaged mean has been removed in order to better show the spatio-temporal 
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FIGURE 15. Time traces of baroclinic wavy kinetic energy in several regimes: (a) F = 1.85, Q = 0.2 
(steady); (b)  F = 2.50, Q = 0.2 (periodic); (c) F = 3.75, Q = 0.2 (quasi-periodic); ( d )  F = 4.20, 
Q = 0.2 (chaotic); (e )  F = 1.25, Q = 0.08 (chaotic). 

dynamics. The shift-reflect symmetry can clearly be seen. Although the system is 
periodic, the flow exhibits quite complicated spatial behaviour. In figure 16(b), the 
barotropic and baroclinic stream functions are displayed in a subcritical chaotic regime 
(Q = 0.08, F = 1.25) for six times with an interval equal to about 2 AV oscillation 
periods. The spatial fields again are complicated. The lack of shift-reflect symmetry is 
apparent since all modes are generally non-zero. 

For Q = 0.125, the bifurcation sequence is slightly different. At F = F, = 1.60, there 
is a transient AV regime that eventually becomes chaotic. However, at F = 2.10, there 
is an inverse bifurcation which causes the system to return to a symmetric, AV state. 
This behaviour continues until F = 2.30, at which point a symmetric zonotropic 
instability grows and results in quasi-periodic behaviour. The quasi-periodic solution 
is stable until F = 2.40, when both asymmetric modes grow and again cause chaos. 
These solutions bridge the gap between those seen at Q = 0.10 and those observed for 
Q = 0.15 or Q = 0.20. 

One set of runs was carried out for F fixed at F = 1.9 with variable Q, the results of 
which are also displayed in figure 13(a). This was done in order to examine the 
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continuity of solutions in parameter space as Q was varied. At Q = 0.2, a symmetric 
steady solution is obtained. This persists until Q z 0.16, at which point a symmetric 
zonoclinic instability occurs, resulting in AV. If perturbed with a small-amplitude 
asymmetric nudge, the system returns to AV for 0.10 < Q < 0.16, but becomes chaotic 
for Q < 0.10. However, a sufficiently large asymmetric perturbation results in a 
transition to chaos for Q < 0.15. This indicates that hysteresis is present for Q < 0.15. 

7. Re-examination of the transitional region 
Our original numerical results indicated that the transition from y < 0 to y > 0 

behaviour occurs as Q crosses Q, = 0.15. whereas the theory (figure 8) predicts that 1’ 
changes sign when Q = Qt z 0.13. Upon further examination, the full numerical code 
revealed that very small-amplitude supercritical solutions do indeed exist for Q 5 Qc, 
but that subcritical behaviour exists for larger amplitudes (hence the two steady 
solutions shown for F x F, and Q = 0.15 in figure 13b). This situation may occur if the 
A” term in (44) is stabilizing, but a higher-order A5 term is destabilizing, requiring in 
turn a stabilizing A’ term to bring the system to eventual equilibration. Although such 
a higher-order model is not directly obtainable by weakly nonlinear cascade, the 
structures of the bifurcation diagrams from such a heuristic system resemble those 
obtained numerically. For example, the various higher-order bifurcation diagrams are 
sketched in figure 17. Figure 17(a) illustrates the typical subcritical bifurcation diagram 
that exists for Q z 0.10. In figure 17(b). we see the situation when the A 3  term is 
stabilizing but the A’ term is destabilizing. This is applicable for Q z 0.15. In this case, 
small initial conditions started at F slightly greater than F, will evolve to the small 
supercritical branch near the origin. However, if the initial perturbation is too large, 
then the solution will jump up to the subcritical branch. This can be seen for Q = 0.15 
in figure 13(b), where the system jumps from the supercritical steady solution (S,) to 
the subcritical one (S,) as Fis decreased very slightly. Finally, for Q z 0.20 (figure 17c), 
the instability is purely supercritical, with no hysteresis or multiple solutions observed. 

Although the existence of a subcritical bifurcation structure is predicted by the 
weakly nonlinear theory and confirmed by the numerical results, the structure itself is 
not easily obtainable directly from the numerical simulations, since the unstable 
solutions will never be realized. In order to extract such information, empirical 
orthogonal function (EOF) models were utilized. The methodology of constructing 
such models is discussed by Rodriguez & Sirovich (1990) and is explored in more detail 
in the context of two-layer channel flow with free-slip sidewalls by Mundt & Hart 
(1994). The crux of the method is to find basis functions which optimally describe the 
behaviour of the chosen system by appealing to data from the model itself. These 
models often prove useful because of their ability to accurately model relatively 
complex spatio-temporal behaviour with a small number of equations. In addition, 
EOF-based systems allow the determination of unstable steady states and, conse- 
quently, bifurcation structure. 

EOF models were constructed at Q = 0.10, F = 1.55, and also at Q = 0.2, F = 2.50. 
These parameter settings were chosen in order to obtain one model representative of 
the subcritical region and one reflective of the supercritical regime. A model 
constructed in the mixed regime was not successful in replicating the pertinent 
bifurcation structure; the failure was due to numerical errors which prevented the 
resolution of the supercritical stable fixed point. For both sets of parameter settings 
used, the EOFs were obtained in an AV regime. Although for Q = 0.10 this behaviour 
is transient, the spatial fields were sampled well before the other instabilities reached 
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FIGURE 16. Barotropic (colour) and baroclinic (black contours) streamfunctions. (a)  Q = 0.20, 
F = 7.50. The system is periodic, and the snapshots are taken every sixth of a period. ( b )  Q = 0.08, 
F = I .25. The system is chaotic, and the snapshots are taken at time intervals of approximately two 
AV periods. I n  (a) and (h )  the ),-coordinate i s  stretched so that the flow near the sidewalls may be 
seen more clearly, and time increases from front to back. 
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FIGURE 17. Various bifurcation structures seen in the rigid model: (a)  Q = 0.10, purely subcritical - -  
bifurcation; (b )  Q = 0.15, mixed bifurcation; (c) Q = 0.26, purely supercctical bifurcation. The solid 
and dashed lines indicate stable and unstable solutions, respectively. In all cases, F, = I ,  and the 
amplitudes are arbitrary. 

a measurable amplitude. In both cases, four barotropic wavy EOFs, four baroclinic 
wavy EOFs, and three baroclinic zonal EOFs were necessary to model the flow 
accurately. The resulting sets of 11 ODES were then used to find the fixed points of the 
system. and their stability, near 4. The fixed points were found using Newton’s root- 
finding method, and the stability of the fixed points was obtained by linearizing the 
governing equations about the steady state and examining the evolution of small 
perturbations. The only restriction is that the method implicitly assumes that the 
spatial behaviour remains constant throughout the chosen range of parameter space; 
the validity of this assumption was verified a posteriori. The results are shown in figure 
18(a, b) ,  where the amplitude of the baroclinic zonal correction is shown versus F. 

At Q = 0.1, there is a clear subcritical bifurcation with an unsteady subcritical fixed- 
point branch emanating from near F, (numerical errors prevented the resolution of the 
unstable fixed-point branch near the origin for F > I .36), a small region in which there 
is a stable fixed point (near F = 1.27) and a supercritical fixed-point branch which is 
unstable to a Hopf bifurcation (the approximate amplitude of which is also shown). In 
contrast, for Q = 0.2, there is a supercritical stable fixed-point branch that begins at 
F z 1.8 and becomes unstable to a Hopf bifurcation at F z 2.2. The EOF models 
allow us to extract the numerical model’s bifurcation structure and demonstrate that 
it is consistent with figure 17. 

The presence of a mixed bifurcation diagram for Q z 0.15 can be inferred from the 
results of the full numerical simulations. Figure 19 displays the barotropic wavy kinetic 
energy versus F at Q = 0.15. The x symbols indicate the stable supercritical steady 
amplitudes, while the + denote the stable subcritical steady values. The asterisks 
reflect the mean amplitudes of stable AV solutions. The bifurcation structure indicates 
that the supercritical steady solution persists for values of F only slightly greater than 
F, (shown by the dashed line). Nonetheless, the shape is analogous to that shown in 
figure 17(b). 
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FIGURE 19. Mixed bifurcation structure as  inferred from numerical simulations for Q = 0.15, 
E / R u  = 0.001. The plot displays the barotropic wavy kinetic energy versus F. The x and + indicate 
stable, steady solutions, while the asterisks denote the mean amplitudes of periodic AV solutions. The 
dashed line denotes F,. 

8. Conclusions 
The presence of rigid sidewalls has been shown to dramatically alter the behaviour 

of the baroclinic instability. For small enough bottom friction, the initial instability is 
subcritical, and chaotic behaviour can occur for negative supercriticality. Although the 
model geometry is different than that of typical laboratory experiments, the transition 
to chaos occurs, for the relevant parameter values, at approximately unit super- 
criticality. This compares well with previous f-plane experiments (Hart 1985), and it 
contrasts sharply with the transition to chaos at F x 54 seen in previous numerical 
experiments performed with free-slip sidewalls. This indicates that the sidewall 
boundary layers are extremely important in determining the dynamical behaviour of 
baroclinic wave equilibration. 
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The application of the no-slip boundary condition leads to a sharp horizontal shear 
layer in the basic zonal current near each wall. These are fundamentally Stewartson 
layers in which lateral diffusion of vertical vorticity and stretching of planetary 
vorticity by Ekman suction exactly balance. For typical laboratory parameters the 
growing baroclinic waves feel the no-slip boundary condition through a narrower inner 
viscous boundary layer in which horizontal vorticity diffusion of the wave is balanced 
by advection in the strong basic-state vorticity gradients near the walls by normal 
velocities in the waves. The waves thus see an essentially inviscid horizontal basic 
shear outside this inner diffusion layer. The eigenfunctions of the basic baroclinic 
instability are somewhat altered in this shear layer. The effect on the perturbation 
streamfunctions does not appear large, compared with the stress-free case in which 
there is no basic horizontal shear. However, when we cascade these no-slip modes 
through to higher order, differentiations required to compute subsequent self- 
interaction vorticity advections magnifies these subtle influences and produces a 
substantially altered baroclinic zonal-flow vorticity gradient. The interaction between 
the basic barotropic wave and this second-order mean baroclinic vorticity gradient, 
especially in the Stewartson shear zones, leads to an enhancement of the linear growth 
rate, and for small enough bottom friction, to subcritical instability. In regions of 
subcritical instability, high-resolution numerical computations show that the baroclinic 
wave amplitudes can become very large, system symmetries are destroyed by secondary 
instability, and baroclinic chaos may be found at negative supercriticality. 

It is natural to ask about effects of cylindrical geometry and ageostrophy on these 
processes. The cylinder is somewhat different in that there is only one wall, and this, 
coupled with the mechanism for driving the laboratory flows from the top onlj, 
eliminates both the flipreverse and shift-reflect symmetries of our channel model. This 
should render the bifurcations observed in the present computations imperfect, and 
efforts to construct a multi-grid code to examine this are currently under way. Our 
simulations have shown that no-slip sidewalls dramatically reduce the supercriticality 
needed for chaos. However, one aspect of the laboratory experiments cannot be 
captured by this $plane model. That is the observation (Hart 1985) that cyclonic 
forcing (anticyclonic outer wall layer) is significantly more unstable than anticyclonic 
driving (with a cyclonic Stewartson layer at the cylinder wall). One hypothesis under 
investigation is that this is due to nonlinear Ekman suction effects in the strong- 
vorticity zone at the sidewall that cause significant differences in shear profiles for the 
two driving methods. 
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